
J Math Chem (2009) 45:930–939
DOI 10.1007/s10910-009-9524-6

ORIGINAL PAPER

Approach on Tsallis statistical interpretation
of hydrogen-atom by adopting the generalized
radial distribution function

George Livadiotis

Received: 18 October 2008 / Accepted: 21 January 2009 / Published online: 6 February 2009
© Springer Science+Business Media, LLC 2009

Abstract This paper revisits the statistical interpretation of the hydrogen atom
within the framework of Tsallis Statistical Mechanics in the Canonical Ensemble.
The convergence of the partition function does not exhibit for all the temperatures,
while the well-known T → T ′ transformation method of Tsallis Statistics fails, since
non-monotonicity is observed between the ordinary temperature, T, and the auxiliary
one, T ′. Here we re-examine the inconsistency of T → T ′ transformation method, in
the case where the partition function converges for all the temperatures, by consider-
ing the generalized radial distribution function. We find that both the transformation
method inconsistency and the partition function divergence can be recovered for all
the temperatures, if the hydrogen atom is restricted within a critical radius Rc ≤ 4.832
bohr, while Tsallis entropic index values are given by q (Rc) ∈ [

qc ∼= 0.664, q∗ = 7
9

]
.

Keywords Hydrogen-atom · Generalized radial distribution function ·
Tsallis Statistics

1 Introduction

In the last two decades, the Boltzmann–Gibbs statistical thermodynamics was success-
fully generalized to the non-extensive thermostatistical formulation, proposed by Tsal-
lis [1]. Indeed, many physical systems that cannot by explained correctly in the classi-
cal statistical description, found their convincing description within the framework of
non-extensive Statistics [2,3]. One of the significant applications of Tsallis Statistics
concerns the partition function for the discrete energy levels of the hydrogen-atom
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in the canonical ensemble. In particular, Lucena, da Silva and Tsallis calculated the
specific heat of a hydrogen-atom in the canonical ensemble [4], where the obtained
results depend on the selected values of q < q∗, where the critical value q∗ = 7

9 was
discussed in [3,5].

The relevant pioneer publication of Tsallis [1] suggests the following generalized
entropy formulation

Sq = 1

q − 1

(

1 −
W∑

k=1

pq
k

)

, (1)

where the Boltzmannian formulation can be uniformly included in that of Tsallis for
q → 1 [1–3].

The concept of the Canonical Ensemble involves the extremalization of Sq with
the constraints of the norm

∑W
k=1 pk = 1 and of the normalized q-expectation value

of energy
∑W

k=1 Pkεk = Uq , expressed in terms of the dual, escort probabilities

Pk
({pi }W

i=1 ; q
) ≡ pq

k /
∑W

k=1 pq
k (inversed as pk

({Pi }W
i=1 ; q

) ≡ P1/q
k /

∑W
k=1 Pk

1/q),
yielding the following thermal equilibrium probability distribution of the energy spec-
trum {εi }W

i=1 as [1–4]:

pk

(
{εi }W

i=1 ;β; q
)

= gk
1

Zq

[
1 − (1 − q) β ′εk

] 1
1−q , (2)

with the partition function given by

Zq =
W∑

k=1

gk
[
1 − (1 − q) β ′εk

] 1
1−q , (3)

where

β ′ ≡ β
∑W

k=1 pq
k + (1 − q) βUq

≡ 1

kB T ′ , (4)

β ≡ 1

kB T
, (5)

and {gi }W
i=1 are the relevant degeneracy spectrum of the energy states {εi }W

i=1.
Speaking more precisely, the quantity within the outer brackets of Eqs. 2 and 3 has

to be nonnegative. Therefore, we usually rewrite Eqs. 2 and 3 in terms of the modified
brackets [·]+, having the following meaning: [u]+ = u, for u ≥ 0, and [u]+ = 0,
for u ≤ 0, expressing the so-called “cut-off condition” of Tsallis [2,3]. Throughout,
however, we will ignore this symbolism for simplicity, while we will retrieve it when
is necessary.

By introducing the q-expectation value of energy
∑W

k=1 Pkεk = Uq , instead of the
classical one

∑W
k=1 pkεk = U [2,3,5,6], Tsallis succeeded, among others, in recov-

ering the additivity relation of the expectation values of energy (internal energies) of
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two subsystems, and the invariance of the probability distribution, with respect to the
energy ground level arbitrary definition.

On the other hand, the problem of the implicit expression of the probabilities {pi }W
i=1

is overcome through the transformation (4), where β ′ should be handled as intermedi-
ate parameter which is used only for computational sake. In particular, [7] summarized
the following computational steps, in order the probability implicitness to be avoid:
(i) Computation of the quantities yk ≡ 1 − (1 − q)β ′εk,∀k = 1, . . . , W . (ii) Cut-off

condition: If yk < 0 then set yk = 0. (iii) Compute Zq = ∑W
k=1 y

1
1−q
k . (iv) Derivation

of the connecting thermodynamical quantities, such as the internal energy, in terms of
the intermediate parameter β ′. (v) Retrieving of β, through the expression β = β

(
β ′),

given in Eq. 4.
In their recently published paper [8], Barati and Moradi claimed the inconsistency

of the above described the transformation β → β ′ method, when it is applied to a
hydrogen-atom in the canonical ensemble. As Tsallis et al. pointed out [6], after the
elimination of the possible quantum originated spurious oscillations which disappear
at high temperatures, one must obtain the re-normalized temperature T, as a mono-
tonically increasing function of the intermediate one T ′. However, Barati and Moradi
observed that for the accepted values of q (namely, q < 7

9 ), the re-normalized tem-
perature T does not behave as a monotonically increasing function of the intermediate
temperature T ′, for the allowable range of q for the hydrogen-atom.

On the other hand, the partition function for the discrete energy levels of the hydro-
gen-atom is thought to be given by Eq. 3, where εk = RH

(
1 − 1/k2

)
(RH is the

Rydberg constant), suitably modified for the ground state energy being at the origin,
namely,

Zq
(
t ′
) =

∞∑

k=1

2k2
[

1 − 1 − q

t ′

(
1 − 1

k2

)] 1
1−q

, (6)

where the reduced temperature t ′ (and t) is defined by 1/t ′ ≡ β ′ RH (and 1/t ≡ β RH ).
Unfortunately, as it is well known, this partition function suffers from divergence for
the Boltzmannian case q → 1, for all the values of temperatures. (Strictly mathemat-
ically speaking, this is caused by the term implied by the degeneracy gk = 2k2, since
for large k∗, we have Z ≈ const. (t; k∗) + ∑∞

k=k∗+1 k2, which obviously diverges.)
However, in general, Zq

(
t ′
)

diverges for t ′ > 1−q, while converges in the t ′-interval
Dt ′,Conv = (0, 1 − q] ⊂ 
+.

Hence, we conclude in the following remarks:

– First, the results of Barati and Moradi are undoubtedly correct, since they are
easily replicated and verified. In summary, these are the following: The partition
function for the discrete energy levels of the hydrogen-atom does converge only
for temperature values t ′ ∈ Dt ′,Conv . On the other hand, the subinterval of the
consistency values of t ′, namely, Dt ′,Consist = (

0, t ′∗
) ⊂ Dt ′,Conv ⊂ 
+, where

t ′∗ < 1 − q, is included within the converging interval Dt ′,Conv , rather than coin-
ciding with it. Hence, there is an interval of inconsistency, namely, Dt ′,I nconsist =(
t ′∗, 1 − q

) �= ∅.
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– However, by proposing the two alternative methods, the iterative and the β → β ′
transformation methods, Tsallis et al. [6] remarked that their equivalence is an
outcome of two preconditions. The first one, as we mentioned, is constituted by
the monotonically increasing function t

(
t ′
)
(or by β

(
β ′)). Tsallis et al. [6] found

that there is a lower limit for entropic indices qc for which this is true. (The critical
value qc depends on the particular system. E.g. for the quantum harmonic oscilla-
tor qc ∼= 0.56 [7].) The second precondition is not discussed by [6], because it is
trivial: The partition function (and any relevant summations) has to converge for
all temperature values, as it is naturally expected. (None invalid temperature value
is known, except of the finite number of temperature values where we have phase
transitions.) If the second precondition is not fulfilled, then it is not self-evident that
there exists any entropic index for which t

(
t ′
)

is monotonically increasing function.

Therefore, one first purpose of this paper is to investigate the case where the diver-
gence is totally recovered, namely Dt ′,Conv = 
+. One conceptual and consequent
way of avoiding the apparent divergence of the partition function in Boltzmann–Gibbs
Statistics involves considering the so-called generalized radial distribution function.
We will show that this also holds in the case of Tsallis Statistics.

Thereafter, we examine whether the inconsistency still exists or is recovered, when
the divergence is totally recovered adopting the generalized radial distribution func-
tion, i.e., Dt ′,Consist = 
+, when Dt ′,Conv = 
+. We will show that both can be
recovered, if the hydrogen atom is restricted within a critical radius. In this case,
indeed, we find Dt ′,Conv = Dt ′,Consist = 
+.

2 The generalized radial distribution function

As it was mentioned, the Boltzmannian partition function, given by the limit q → 1
of the Tsallis-like partition function, given in Eq. 6.

Z B
(
t ′ = t

) =
∞∑

k=1

2k2e
− 1

t

(
1− 1

k2

)

, (7)

suffers from divergence for any temperature value.
However, for the hydrogen-atom imposed in a Riemannian space of constant posi-

tive Gaussian curvature 1/R, Schrödinger [9] showed that the energy eigenvalues are
given by

εk = RH

(
1 − 1

k2 + k2 − 1

R2

)
, (8)

where the dimensionless radius R counts the Bohr-radii. Hence, the divergence of the
relevant Boltzmannian partition function recovers in

Z B,R (t) =
∞∑

k=1

2k2e
− 1

t

(
1− 1

k2 + k2−1
R2

)

. (9)
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We stress that the partition function converges for any finite value of R, namely,
Z B,R (t) < +∞. This is apparent because as it well known, for any polynomial
P(x;d) of degree d, a critical value x∗ can always be found, so that ∀x > x∗ the expo-
nential function ex growths faster than P(x;d). Hence, by setting P (x; d) ≡ x2, we
have that

∞∑

k=k∗

k2

e
k2

t R2

<

∞∑

k=k∗

k2

(
k2

t R2

)2 = t2 R4
∞∑

k=k∗

1

k2 < +∞.

Hence,

Z B,R (t) =
∞∑

k=1

2k2e
− 1

t

(
1− 1

k2 + k2−1
R2

)

=
k∗∑

k=1

2k2e
− 1

t

(
1− 1

k2 + k2−1
R2

)

+
∞∑

k=k∗
2k2e

− 1
t

(
1− 1

k2 + k2−1
R2

)

,

where

∞∑

k=k∗
2k2e

− 1
t

(
1− 1

k2 + k2−1
R2

)

= 2e
− 1

t

(
1− 1

R2

) ∞∑

k=k∗
k2e

− k2

t R2 e
1

tk2

< 2e
− 1

t

(
1− 1

R2

)

e
1

tk∗2

∞∑

k=k∗
k2e

− k2

t R2

< 2e
− 1

t

(
1− 1

R2

)

e
1

tk∗2 t2 R4
∞∑

k=k∗

1

k2 < +∞.

so that

Z B,R(t) <

k∗∑

k=1

2k2e
− 1

t

(
1− 1

k2 + k2−1
R2

)

+ 2e
− 1

t

(
1− 1

R2

)

e
1

tk∗2 t2 R4
∞∑

k=k∗

1

k2 < +∞.

Of course, and as Blinder [10] remarked, we do not claim that the actual curvature of
space-time is capable for having any perceptible effects on atomic structures. However,
the Riemannian curvature is an effectual metaphor for representing the influence of
generalized radial distribution function defined in the 3-dimensional Euclidean space
occupied by the atom.

The generalized radial distribution function Dn(r) was introduced to characterize
the spherically symmetrical function resulting from a summation over all the angu-
lar momentum states for a given energy [10–12]. In such a case, the contribution
of the discrete states of the hydrogen-atom leads to a partition function of the form
Z B,R (t), while, however, the radius R is related to the Laboratory-size volume V,
namely, V = 2π2 R3 (in Reimannian space).
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Here, we are interested in integrating into the vicinity of the atom, namely, R is
reduced to the atomic scales, that is of the order of several Bohr radii. On the other
hand, within the framework of Tsallis Statistical Mechanics, the relevant partition
function is given by

Zq,R
(
t ′
) =

∞∑

k=1

2k2
[

1 − 1 − q

t ′

(
1 − 1

k2 + k2 − 1

R2

)] 1
1−q

. (10)

Throughout, we are approach the problem, considering the restoring term
(
k2 − 1

)
/R2

in energies, as it is given in Eq. 8.

3 Results

3.1 Partition function convergence

In Fig. 1a we examine the “partial partition function”, given by

Z N
q,R

(
t ′, N

) =
N∑

k=1

2k2
[

1 − 1 − q

t ′

(
1 − 1

k2 + k2 − 1

R2

)] 1
1−q

, (11)

where we numerically verify its convergence as N → ∞, for q = 0.7, t ′ = 0.5 >

1 − q = 0.3, and R = 102, 103, 104, 105, and 106. The convergence is also shown in
Fig. 1b for q = 0.7, R = 104 and t ′ = 0.4, 0.5, 1, 2, and 5.

Moreover, the convergence of Zq,R
(
t ′
)
, as given by Eq. 10, can be also analytically

shown, as follows.
The partition function for R → ∞, i.e., Zq

(
t ′
)
, as given by Eq. 6, has the

quantity within the outer brackets, i.e., 1 − 1−q
t ′

(
1 − 1

k2

)
, being always positive for

Fig. 1 The convergence of the partial Tsallis-like partition function, given in Eq. 11 a for q = 0.7, t ′ =
0.5 > 1 − q = 0.3, and R = 102 (cross-line), 103 (dashdot-line), 104 (dash-line), 105 (dot-line),
106 (solid-line), and b for q = 0.7, R = 104 and t ′ = 0.4 (solid-line), 0.5 (dot-line), 1 (dash-line), 2
(dashdot-line), 5 (cross-line)
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t ′ > 1 − q, and lying in the interval 0 < 1 − 1−q
t ′

(
1 − 1

k2

)
≤ 1. Indeed, we have

1− 1−q
t ′

(
1 − 1

k2

)
≤ 1− 1−q

t ′ (1 − 1) = 1 and 1− 1−q
t ′

(
1 − 1

k2

)
≥ 1− 1−q

t ′ > 0. How-

ever, for t ′ ≤ 1−q the quantity 1− 1−q
t ′

(
1 − 1

k2

)
is not always positive. In particular,

it is positive for sufficiently small values of k, while as k increases it becomes smaller

and for k > k∗, where k∗ =
(

1 − t ′
1−q

)−1/2
, it is negative. (Obviously, the value of k∗

can be readily found by setting 1− 1−q
t ′

(
1 − 1

k∗2

)
= 0. Moreover, we apparently take

into account only the integer part, i.e., k∗ = Integer

{(
1 − t ′

1−q

)−1/2
}

, but we ignore

this symbolism for simplicity.). Thus, the maximum value of k is k∗, due to the Tsallis
cut-off condition. This is the reason of the convergence of Zq

(
t ′
)

for t ′ ≤ 1 − q.
Similarly in the case of finite value of R, the partition function Zq,R

(
t ′
)
, as given

by Eq. 10, does converge for the same reason, namely, due to the Tsallis cut-off con-
dition, that implies a maximum value of k, that is k∗

R . Indeed, the quantity within the

outer brackets of Eq. 10 is 1 − 1−q
t ′

(
1 − 1

k2 + k2−1
R2

)
, is monotonically decreasing

as k increases, being equal to zero for sufficiently large values of k. (The function
f (x) = 1 − 1

x2 + x2−1
R2 is monotonically increasing for any x ≥ 1, since f ′ (x) =

2 1
x3 + 2 x

R2 .) Also, by setting 1 − 1−q
t ′

(
1 − 1

k2 + k2−1
R2

)
= 0, we readily find that

k∗
R =

√
b + √

b2 + R2, where 2b ≡
(

t ′
1−q − 1

)
R2 + 1.

We observe that for any finite value of R, k∗
R is well defined, independently of the

value of t ′
1−q . Hence, the series involved in Zq,R

(
t ′
)

ceases, due to the cut-off condi-

tion, independently of the value of t ′
1−q . Therefore, Zq,R

(
t ′
)

converges for any finite
value of R.

On the other hand, however, for R → ∞, k∗
R has the asymptotical behavior k∗

R →
R

(
t ′

1−q − 1
)1/2 → +∞ for t ′

1−q > 1, and k∗
R → k∗ =

(
1 − t ′

1−q

)−1/2
< +∞ for

t ′
1−q < 1, and k∗

R → √
R → +∞ for t ′

1−q = 1. Namely, for t ′
1−q ≥ 1 the series

involved in Zq
(
t ′
)

does not cease, while it does cease for t ′
1−q < 1, due to the cut-off

condition. Therefore, Zq
(
t ′
)

converges for R → +∞, only for t ′
1−q < 1.

Hence, for R < +∞, the interval of the temperature values for which the con-
vergence of the partition function holds is Dt ′,Conv = 
+. This result is remarkable
since partition function has to converge for all the temperature values, as it is naturally
expected, while none invalid temperature value has to emerge through the statistical
interpretation.

However, one may lodge the following objection: Once we utilize the generalized
radial distribution function, the Boltzmann–Gibbs Statistics is sufficient for the statisti-
cal interpretation of thermodynamics regarding the hydrogen atom, since the partition
function converges. Then, by means of what insights the adoption of Tsallis Statistics
is necessary to be applied? Nevertheless, the key role of Tsallis generalized statisti-
cal interpretation of thermodynamics does not exhaust by far all its potentialities by
describing systems that Boltzmann–Gibbs Statistics cannot be applicable. (A glance
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to the relevant literature reveals numerous examples of systems that Tsallis Statistics
found to fit, yielding a better description than Boltzmann–Gibbs Statistics does.)

3.2 The monotonicity of t
(
t ′
)

Now, let examine the interval of the temperature values for which t ′ = t ′(t) is mono-
tonically increasing function.

In Fig. 2a we observe the existence of inconsistency intervals, characterizing the
non-monotonicity of t

(
t ′
)
, for the case of the entropic indices q = 0.3, 0.5, 0.7, 0.73,

and 0.76, while R → +∞. However, in the respective Fig. 2b where R = 3.276,
we observe that the inconsistency recovers for q = 0.7, 0.73, and 0.76, while it still
remains for q = 0.3, 0.5.

In particular, there is a critical value qc ∼= 0.664, for which, ∀q ∈ [qc ∼= 0.664,

q∗ = 7
9 ] we can find a critical radius Rc (q): ∀R ≤ Rc (q) the inconsistency recovers

for all the temperature values, namely, Dt ′,Consist = 
+. The following Table 1 reads
some characteristic values of Rc (q):

Then, the expression of Rc (q) can be satisfactorily approximated by the linear form

Rc (q) ∼= 2.741 + 18.7 (q − qc) 0. (12)

Fig. 2 The function t
(
t ′
)

is depicted for the entropic indices q = 0.3 (dash-line), 0.5 (cross-line), 0.7
(solid-line), 0.73 (dash-dotline), and 0.76 (dot-line), and for a R → +∞, b R = 3.276. We observe
that the inconsistency intervals recover for q = 0.7, 0.73, and 0.76. (Compare with the table values)

Table 1 Some characteristic
values of Rc(q) for which the
inconsistency recovers
∀R ≤ Rc(q) and ∀q ∈[
qc ∼= 0.664, q∗ = 7

9

]

q Rc (q)

qc ∼= 0.664 2.741

0.67 2.826

0.7 3.276

0.73 3.935

0.76 4.511

q∗ ∼= 0.777 4.832
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Therefore, for all q ∈ [
qc ∼= 0.664, q∗ = 7

9

]
and R ≤ Rc (q), where Rc,Min ≤

Rc (q) ≤ Rc,Max , with Rc,Min = 2.741, Rc,Max = 4.832, we conclude in Dt ′,Consist=
Dt ′,Conv = 
+, and the inconsistency of the transformation method of Tsallis Statis-
tics regarding the hydrogen atom recovers.

Note that the inverse of Eq. 12, namely,

q (Rc) ∼= q∗ + 1

18.7

(
Rc − Rc,Max

)
, (13)

reads that we can attain to Dt ′,Consist = Dt ′,Conv = 
+, for all R ≤ Rc: Rc ∈[
Rc,Min, Rc,Max

]
and q = q (Rc) ∈ [

qc, q∗].
We stress the fact that, in the past, the generalized radial distribution function was

utilized by being integrated in a radius R, that is of the laboratory order of dimensions.
However, it is not exclusionary to be integrated in a radius R of the order of several
atom radii. Indeed, limitations on the electron radial distance from the nucleus cannot
exclusively provided by the macroscopic box boundaries, but also from the presence
of the other hydrogen atoms. This consideration signifies the meaning of the mean
free path assigned between the atoms.

Finally, we remark that there is no need for the interval of the R-values, DR,Conv ,
for which the convergence of Zq,R exhibits, i.e., DR,Conv = (0,+∞), to coincide
with the interval of the R-values, DR,Consist , for which the inconsistency recovers,
i.e., DR,Consist = [0, Rc (q)] (in the same manner that the respective intervals of the
q-values shall differ).

4 Conclusions

This paper revisited the statistical interpretation of the hydrogen atom. Within the
framework of Tsallis Statistical Mechanics, the case where the divergence of the
partition function is totally recovered by adopting the generalized radial distribution
function, was thoroughly examined.

Thereafter, we examined whether the inconsistency still exists or is recovered, when
the divergence is totally recovered by adopting the generalized radial distribution func-
tion. We found that both can be recovered: The validity of the T → T ′ transformation
method was ensured as soon as the partition function converge for all the temperature
values.

The necessity of the partition function to be converging for all the temperature
values, as it is naturally expected, while none invalid temperature value has to be
emerging through the statistical interpretation, was stressed out.

In particular, we sought for the critical values of the entropic indices for which
the monotonicity of t

(
t ′
)
(or of β

(
β ′)) holds. (The T → T ′ transformation method

is ensured when this monotonicity holds. E.g., in the case of the quantum harmonic
oscillator, where the partition function converges for all the temperature values, t

(
t ′
)

is
monotonically increasing function for q > qc ∼= 0.56 [6]). Moreover, the generalized
radial distribution function was integrated in a radius R, being of the order of sev-
eral atom radii. As it was claimed, limitations on the electron radial distance from
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the nucleus cannot exclusively provided by the macroscopic box boundaries, but also
from the presence of the other hydrogen atoms.

Finally, we found that for all the entropic indices q ∈ [
qc ∼= 0.664, q∗ = 7

9

]
and the

radii R ≤ Rc(q), where 2.741 ≤ Rc(q)≤ 4.832, the inconsistency of Tsallis Statistics
(regarding the hydrogen atom [8]) is totally recovered, in similar to the convergence
of the partition function Zq , that is for all the temperature values.
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